On a New Test for Autocorrelation in Least Squares Regression
نویسندگان
چکیده
منابع مشابه
Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson'...
متن کاملPEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION
Pedomodels have become a popular topic in soil science and environmentalresearch. They are predictive functions of certain soil properties based on other easily orcheaply measured properties. The common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. In modeling natural systems such as s...
متن کاملA New Technique for Image Zooming Based on the Moving Least Squares
In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...
متن کاملA note on sparse least-squares regression
We compute a sparse solution to the classical least-squares problem minx ‖Ax−b‖2, where A is an arbitrary matrix. We describe a novel algorithm for this sparse least-squares problem. The algorithm operates as follows: first, it selects columns from A, and then solves a least-squares problem only with the selected columns. The column selection algorithm that we use is known to perform well for t...
متن کاملNew Bounds on Compressive Linear Least Squares Regression
In this paper we provide a new analysis of compressive least squares regression that removes a spurious logN factor from previous bounds, where N is the number of training points. Our new bound has a clear interpretation and reveals meaningful structural properties of the linear regression problem that makes it solvable effectively in a small dimensional random subspace. In addition, the main p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 1971
ISSN: 0006-3444
DOI: 10.2307/2334316